Bioactive Compounds from the Gorgonian Briareum polyanthes. Correction of the Structures of Four Asbestinane-Type Diterpenes

Claudia A. Ospina and Abimael D. Rodríguez*
Department of Chemistry, University of Puerto Rico, P.O. Box 23346, U.P.R. Station, San Juan, Puerto Rico 00931-3346

Received July 4, 2006

Abstract

Our extended chemical investigation of the crude $\mathrm{MeOH}-\mathrm{CHCl}_{3}$ extract of the gorgonian octocoral Briareum polyanthes from Puerto Rico has led to the isolation of three eunicellin-type diterpenoids, $\mathbf{1}-\mathbf{3}$, along with five $(\mathbf{4}-\mathbf{8})$ diterpenoids of the asbestinane-type and one (9) of the briarane-type of polycyclized diterpenes. The structures and relative stereochemistry of the new compounds $\mathbf{1 - 9}$ were established on the basis of spectroscopic analysis (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, HMQC, HMBC, NOESY). The biological activity of these compounds against pathogenic microbes responsible for various human infectious diseases was investigated. In addition, new data recorded for four known asbestinin diterpenes also isolated during this investigation and further analysis through chemical reactions have prompted us to revise our original structural assignments for these compounds.

Briareum polyanthes Duchassaing \& Michelotti (Gorgoniidae) is a West Indian gorgonian species that occurs commonly in the Greater Antilles. ${ }^{1}$ Extracts of this octocoral and its constituents are reported to exhibit a wide spectrum of biological activities including insecticidal, antiviral, antihelminthic, antimicrobial, antiinflammatory, and antiplasmodial. ${ }^{2}$ A previous investigation on the chemical composition of B. polyanthes collected in Puerto Rican waters showed that it is also a rich source of eunicellin-based (briarellins) diterpenoids. ${ }^{3}$ In the present study, we report the isolation of briarellin Q (1), briarellin R (2), and seco-briarellin R (3), new eunicellin-type diterpenoids, along with five new asbestinane-based diterpenoids [asbestinins-24 (4), -25 (5), and -26 (6), seco-asbestinin B (7), and nor-asbestinin A (8)] and the new briarane diterpenoid 9. Their structures were determined mainly through the use of 1D and 2D NMR techniques. In the course of isolating compounds $\mathbf{1 - 9}$, we also found and identified four known asbestinane diterpenes, namely, asbestinin-10, asbestinin-20, asbestinin-21, and 11-acetoxy-4-deacetoxyasbestinin F. ${ }^{4,5}$ In this paper, we discuss new analytical data for the latter compounds that have led us to revise their previously assigned structures.

Results and Discussion

The HRESIMS (positive mode) of briarellin R (2) displayed a quasimolecular ion peak at $m / z 405.2654$ (calcd 405.2641), which corresponds to the molecular formula $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{O}_{5}$. The IR spectrum showed an intense absorption band at $1720 \mathrm{~cm}^{-1}$ (ester carbonyl group). The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ indicated the presence of five methyl groups with three-proton singlets at $\delta 1.74,1.59$, and 1.31, one doublet at $\delta 1.34$, and one triplet at $\delta 0.92$. It also exhibited a broad triplet with large splitting at $\delta 5.63(1 \mathrm{H}, J=8.5 \mathrm{~Hz})$ ascribed to the trisubstituted olefin group. A set of nearly overlapped signals at $\delta 4.04$ and 4.01 , each integrating for one proton, were assignable to H-9 and H-2, respectively. Another set of nearly coalescent oneproton broad singlets at $\delta 2.65$ and 2.67 were attributable to $\mathrm{H}-1$ and H-10. Appropriate ${ }^{13} \mathrm{C}$ NMR signals were observed at $\delta 26.7$ (C-19), 23.1 (C-18), 28.7 (C-20), 17.6 (C-17), 13.6 (C-24), 130.0 (C-6), 80.8 (C-9), 91.7 (C-2), 45.8 (C-1), and $49.9(\mathrm{C}-10)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 2 (Table 1) were closely comparable to those of known briarellin J (11), except that $\mathbf{2}$ showed signals corresponding to an 11-butyryloxyl substituent in lieu of an acetoxyl group. ${ }^{3}$ On the basis of the above data, including data from a NOESY experiment, ${ }^{6}$ briarellin $\mathrm{R}(\mathbf{2})$ was concluded to be the

[^0]
$1 \mathrm{R}_{1}=\mathrm{OH} ; \mathrm{R}_{2}=\mathrm{CH}_{3}$ $10 \mathrm{R}_{1}=\mathrm{CH}_{3} ; \mathrm{R}_{2}=\mathrm{OH}$

3
n-butanoyl analogue of $\mathbf{1 1}$ with the relative stereochemistry as described by formula 2.

Briarellin Q (1), obtained as a white, amorphous solid, displayed 24 signals in the ${ }^{13} \mathrm{C}$ NMR spectrum (two ester carbonyls, three other nonprotonated carbons bearing oxygen, seven methines, seven methylenes, and five methyls) and gave a pseudomolecular ion peak at $m / z 439.2701$ in the HRFABMS (positive mode) attributed to the $[\mathrm{M}+\mathrm{H}]^{+}$ion, suggesting it to be an isomer of known briarellin $\mathrm{O}(\mathbf{1 0})\left(\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{7}\right) .{ }^{3}$ The IR spectrum showed strong absorption bands at 3457 (hydroxyl group) and 1732 and 1716 (ester carbonyls) cm^{-1}. The ${ }^{1} \mathrm{H}$ NMR spectrum (Table 1) had many signals comparable to those of the latter, viz., a pair of 1 H signals at δ 2.67 and 2.60 assignable to bridgehead methines $\mathrm{H}-1$ and $\mathrm{H}-10$, a pair of oxymethine resonances at $\delta 3.65$ and 3.95 for $\mathrm{H}-2$ and $\mathrm{H}-9$, respectively, and signals for an n-butanoyl system involving $\mathrm{C}-11$.

Table 1. ${ }^{1} \mathrm{H}$ NMR (300 MHz) and ${ }^{13} \mathrm{C}$ NMR (75 MHz) Spectral Data for Compounds $\mathbf{1}-\mathbf{4}^{a}$

atom	briarellin Q (1)		briarellin R (2)		seco-briarellin R (3)		asbestinin-24 (4)	
	$\begin{gathered} \delta_{\mathrm{H}}, \text { mult, } \\ J \text { in Hz } \end{gathered}$	δ_{C}, mult	$\begin{gathered} \delta_{\mathrm{H}}, \text { mult, } \\ J \text { in Hz } \end{gathered}$	δ_{C}, mult	$\begin{gathered} \delta_{\mathrm{H}}, \text { mult, } \\ J \text { in } \mathrm{Hz} \end{gathered}$	δ_{C}, mult	δ_{H}, mult, J in Hz	δ_{C}, mult
1	2.67, br d, 9.2	44.8 (CH)	2.65, br s	45.8 (CH)	2.57, m	44.3 (CH)	2.59, q, 9.5	37.7 (CH)
2	3.65 , br s	95.6 (CH)	4.01, br s	91.7 (CH)	4.06, d, 5.2	87.9 (CH)	3.84, d, 8.6	94.7 (CH)
3		85.8 (qC)		85.0 (qC)		83.4 (qC)		77.6 (qC)
4α	2.57, m	$35.3\left(\mathrm{CH}_{2}\right)$	1.71, m	$34.4\left(\mathrm{CH}_{2}\right)$	2.05, m	$29.9\left(\mathrm{CH}_{2}\right)$	1.18, m	$27.6\left(\mathrm{CH}_{2}\right)$
4β	1.78, m		2.10, m		2.32, m		2.02, m	
5α	2.05, m	$29.9\left(\mathrm{CH}_{2}\right)$	2.34, m	$22.8\left(\mathrm{CH}_{2}\right)$	2.46, m	$28.7\left(\mathrm{CH}_{2}\right)$	2.16, m	$25.4\left(\mathrm{CH}_{2}\right)$
5β	2.05, m		1.84, m		2.46, m		1.70, m	
6	3.95, d, 7.1	$78.9(\mathrm{CH})^{\text {b }}$	5.63, br t, 8.5	130.0 (CH)		177.0 (qC)	3.19 , br d, 7.4	82.6 (CH)
7		73.9 (qC)		131.2 (qC)		206.6 (qC)	1.70, m	37.2 (CH)
8α	2.26, m	$46.8\left(\mathrm{CH}_{2}\right)$	2.10, m	$38.4\left(\mathrm{CH}_{2}\right)$	2.74, m	$50.0\left(\mathrm{CH}_{2}\right)$	1.03, m	$38.1\left(\mathrm{CH}_{2}\right)$
8β	1.66, m		2.51, br d, 14.0		2.65, dd, 2.3, 13.5		1.97, m	
9	$3.95, \mathrm{~d}, 7.1$	79.6 (CH)	4.04, m	80.8 (CH)	4.17, dt, 2.3, 8.7	77.8 (CH)	4.06, dd, 4.3, 12.3	82.0 (CH)
10	2.60, m	54.2 (CH)	2.67 , br s	$49.9(\mathrm{CH})^{b}$	2.45, m	52.4 (CH)	1.73, m	48.0 (CH)
11		81.3 (qC)		81.3 (qC)		80.4 (qC)	$5.37, \mathrm{dd}, 2.0,5.8$	73.4 (CH)
12α	2.05, m	$30.1\left(\mathrm{CH}_{2}\right)$	2.02, m	$30.1\left(\mathrm{CH}_{2}\right)$	2.05, m	$30.1\left(\mathrm{CH}_{2}\right)$	2.10, m	31.3 (CH)
12β	2.05, m		2.02, m		2.05, m			
13α	1.85, m	$17.1\left(\mathrm{CH}_{2}\right)$	1.84, m	$16.7\left(\mathrm{CH}_{2}\right)$	1.87, m	$16.2\left(\mathrm{CH}_{2}\right)$	1.47, m	$31.4\left(\mathrm{CH}_{2}\right)$
13β	1.85, m		1.84, m		2.02, m		1.03, m	
14	1.72, m	38.3 (CH)	1.66, m	37.3 (CH)	1.58, m	36.1 (CH)	1.87, m	38.2 (CH)
15	2.99, dq, 4.8, 7.3	46.3 (CH)	2.91, dq, 4.6, 7.4	46.1 (CH)	2.91, dq, 4.7, 7.5	45.8 (CH)	1.64, m	36.3 (CH)
16α		176.0 (qC)		176.1 (qC)		175.8 (qC)	$3.46, \mathrm{dd}, 2.7,13.0$	$68.0\left(\mathrm{CH}_{2}\right)$
16β							$3.76, \mathrm{~d}, 13.0$	
17	1.34, d, 7.6	$17.5\left(\mathrm{CH}_{3}\right)$	1.34, d, 7.6	$17.6\left(\mathrm{CH}_{3}\right)$	1.37, d, 7.4	$17.6\left(\mathrm{CH}_{3}\right)$	0.92, d, 7.1	$11.0\left(\mathrm{CH}_{3}\right)$
18	1.40, s	$23.4\left(\mathrm{CH}_{3}\right)$	1.59 , s	$23.1\left(\mathrm{CH}_{3}\right)$	1.46, s	$20.7\left(\mathrm{CH}_{3}\right)$	1.33, s	$22.8\left(\mathrm{CH}_{3}\right)$
19	1.35, s	$25.4\left(\mathrm{CH}_{3}\right)$	1.74, s	$26.7\left(\mathrm{CH}_{3}\right)^{b}$	2.21, s	$31.3\left(\mathrm{CH}_{3}\right)$	$1.00, \mathrm{~d}, 7.3$	$23.0\left(\mathrm{CH}_{3}\right)$
20	1.31 , s	$28.7\left(\mathrm{CH}_{3}\right)$	1.31, s	$28.7\left(\mathrm{CH}_{3}\right)$	1.29 , s	$28.8\left(\mathrm{CH}_{3}\right)$	0.90, d, 7.2	$17.0\left(\mathrm{CH}_{3}\right)$
21		172.3 (qC)		172.3 (qC)		172.7 (qC)		171.3 (qC)
22	2.33, t, 7.5	$37.2\left(\mathrm{CH}_{2}\right)$	2.19, t, 7.4	$37.4\left(\mathrm{CH}_{2}\right)$	2.23, m	$37.2\left(\mathrm{CH}_{2}\right)$	2.08, s	$21.4\left(\mathrm{CH}_{3}\right)$
23	1.63, m	18.3 ($\left.\mathrm{CH}_{2}\right)$	1.54, m	$18.4\left(\mathrm{CH}_{2}\right)$	1.63, m	$18.5\left(\mathrm{CH}_{2}\right)$	3.29 , s	$56.5\left(\mathrm{CH}_{3}\right)$
24	0.96, t, 7.4	$13.6\left(\mathrm{CH}_{3}\right)$	0.92, t, 7.4	$13.6\left(\mathrm{CH}_{3}\right)$	0.95, t, 7.3	$13.7\left(\mathrm{CH}_{3}\right)$		

[^1] low-intensity resonance line.

The major difference was in the signals for $\mathrm{H}-6$ and $\mathrm{H}-9$ (resonating as a pair of overlapped doublets at $\delta 3.95$), which appeared upfield in 1 by 0.52 and 0.31 ppm , respectively. This was accompanied by a downfield shift of 0.22 ppm for $\mathrm{H}_{3}-19$, which suggests that the relative stereochemistry at C-7 may be reversed in 1, thus pointing to the presence of a cis vic-glycol functionality involving C-6 and C-7. The upfield shift of C-7 (2.4 ppm) and the downfield shift of C-19 (3.0 ppm) observed in the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$ can then be rationalized on the basis of this peculiarity. Detailed analysis of the 2D NMR spectra provided further confirmation that $\mathbf{1}$ is simply a C-7 epimer of briarellin O (10). Strong NOE correlations (recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$) involving H-6 and the $\mathrm{C}-18$ and $\mathrm{C}-19$ methyl protons reveal that the latter are positioned on the same face (interestingly, whereas in briarellin O there exist NOE correlations between H-6 and $\mathrm{H}_{3}-18$, no such correlations exist between H-6 and $\mathrm{H}_{3}-19$). The C-7 (S^{*}) stereochemistry in 1 was also evident from key NOESY correlations between $\mathrm{H}-9$ and $\mathrm{H}_{3}-$ 19.
seco-Briarellin $\mathrm{R}(\mathbf{3})$ showed a pseudomolecular ion peak at m / z $453[\mathrm{M}+\mathrm{H}]^{+}$in the FABMS spectrum (positive mode), and the molecular formula, $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{O}_{8}$, was established by HRFABMS [m / z 453.2487, $(\mathrm{M}+\mathrm{H})^{+}, \Delta+0.1 \mathrm{mmu}$. Broad IR absorptions implied the presence of hydroxyl ($3500-3000 \mathrm{~cm}^{-1}$) and carbonyl (1717 cm^{-1}) functionalities, indicating the presence of a carboxylic acid moiety. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3}$ (Table 1) were analogous to those of 2 except for the following observation: two sp^{2} quaternary carbons ($\delta_{\mathrm{C}} 206.6$ and 177.0) bearing an oxygen atom for $\mathbf{3}$ were observed in place of the olefin carbons of $\mathbf{2}$. The positions of these carbonyl carbons were deduced to be C-7 and C-6 by HMBC correlations for $\mathrm{H}_{3}-19, \mathrm{H}_{2}-8$, and $\mathrm{H}-9$ to $\mathrm{C}-7$, and $\mathrm{H}_{2}-4$ and $\mathrm{H}_{2}-5$ to C-6. The relative stereochemistry of $\mathbf{3}$ was deduced from NOESY correlations. ${ }^{7}$ On the basis of our proposed structure, it appears that $\mathbf{3}$ might arise biogenetically from the oxidation/cleavage of the C-6/C-7 bond of briarellin R (2). Compound 3, with these
uncommon structural features, represents the second example of such ether-cyclized diterpenoids known as seco-eunicellins. ${ }^{8}$

Compounds 4-6 were quickly identified as terpenoids based on the asbestinane carbon skeleton because their ${ }^{13} \mathrm{C}$ NMR spectra did not contain a signal for a tetrasubstituted carbon atom bearing carbon substituents (as found at the carbocyclic ring junction in the briarein series), nor did these compounds reveal a signal near $17-21 \mathrm{ppm}$ ascribable to the $\mathrm{C}-13$ methylene group, as found in the eunicellin (briarellin) series. ${ }^{9}$ To the best of our knowledge, this is the first time that diterpenes based on the asbestinane carbon skeleton are reported from B. polyanthes.

Compound 4, named asbestinin-24, was obtained as a white semisolid, and its HREIMS exhibited a molecular ion at m / z 394.2722, consistent with a molecular formula of $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{5}$. A sharp IR absorption band at $1736 \mathrm{~cm}^{-1}$ implied the presence of a single ester carbonyl functionality. Unlike compounds $\mathbf{1}-\mathbf{3}$, the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}$ indicated the presence of a doublet at $\delta 3.76(J=$ $13.0 \mathrm{~Hz}, \mathrm{H}-16 \beta)$ and a doublet of doublets at $\delta 3.46(J=2.7,13.0$ $\mathrm{Hz}, \mathrm{H}-16 \alpha$), each integrating for one proton, attributable to an oxymethylene group. It also revealed signals for four oxymethines at $\delta 5.37(\mathrm{H}-11), 4.06(\mathrm{H}-9), 3.84(\mathrm{H}-2)$, and $3.19(\mathrm{H}-6)$, three methyl doublets at $\delta 1.00\left(\mathrm{H}_{3}-19\right), 0.92\left(\mathrm{H}_{3}-17\right)$, and $0.90\left(\mathrm{H}_{3}-20\right)$, and three methyl singlets at $\delta 3.29\left(\mathrm{H}_{3}-23\right), 2.08\left(\mathrm{H}_{3}-22\right)$, and 1.33 $\left(\mathrm{H}_{3}-18\right)$. The ${ }^{13} \mathrm{C}$ NMR spectrum showed signals for two oxygenated quaternary carbons [$\delta 171.3(\mathrm{C}-21)$ and $77.6(\mathrm{C}-3)$], four oxygenated methines [$\delta 94.7$ (C-2), 82.6 (C-6), 82.0 (C-9), 73.4 (C-11)], one oxygenated methylene ($\delta 68.0, \mathrm{C}-16$), and an oxygenated methyl ($\delta 56.5$, C-23). Additionally, there were characteristic signals for six nonoxygenated methines at $\delta 37.7$ (C-1), 37.2 (C-7), 48.0 (C-10), 31.3 (C-12), 38.2 (C-14), and 36.3 (C-15). Comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4 with those of known 11-acetoxy-4-deoxyasbestinin D (previously reported from the Caribbean gorgonian B. asbestinum) ${ }^{9}$ made evident the similarities between these structures, but most importantly, revealed the presence of some

11-acetoxy-4-deoxyasbestinin D
$13 \mathrm{X}=\mathrm{CH}_{2}$
features unique to 4 . While the complex tetracyclic ring system along with the acetate functionality at $\mathrm{C}-11$ were shown to be intact in 4, asbestinin-24, however, did not show the olefin carbon signals ascribable to C-6 and C-7. Instead, asbestinin- 24 contained new signals at $\delta 82.6(\mathrm{CH})$ and $37.2(\mathrm{CH})$ for $\mathrm{C}-6$ and $\mathrm{C}-7$, respectively. Moreover, the signals ascribable to H-6 and $\mathrm{H}_{3}-19$ in analogues of the 4 -deoxyasbestinin series having a Δ^{6} olefin were replaced in 4 by new signals at $\delta 3.19(1 \mathrm{H}$, br d, $J=7.4 \mathrm{~Hz}, \mathrm{H}-6)$ and $1.00(3 \mathrm{H}$, d, $J=7.3 \mathrm{~Hz}, \mathrm{H}_{3}-19$), respectively. These combined spectroscopic data led us to propose structure $\mathbf{4}$ for asbestinin-24. The complete planar structure of asbestinin-24 and the unambiguous assignment of all its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals were thus achieved by analysis of COSY, DEPT, HMQC, and HMBC spectroscopic data (Table 1). The relative stereochemistry of most stereogenic centers of $\mathbf{4}$, as determined from a NOESY experiment, was identical with that of all of the previously known diterpenoids in the 4-deoxyasbestinin series. ${ }^{9}$ On the other hand, NOE correlations of $\mathrm{H}_{3}-19$ with H-9 and H-6 established the β-orientation of these protons.

Asbestinin-25 (5) was isolated as an optically active colorless oil whose IR spectrum showed strong absorption bands at 3540 and $1737 \mathrm{~cm}^{-1}$ (hydroxyl and ester groups). The HRFABMS (positive mode) showed a sodiated quasimolecular ion at m / z 433.2570, consistent with a molecular formula of $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{6}$. However, the ${ }^{13} \mathrm{C}$ NMR spectrum acquired in CDCl_{3} at 75 MHz showed 23 pairs of closely spaced resonance lines, suggesting the occurrence at $25^{\circ} \mathrm{C}$ of two stable conformers of $\mathbf{5}$ in a $1: 1$ ratio. Thus, we elected to continue the structure determination of $\mathbf{5}$ using $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$ whereby a single set of 23 resonance lines was obtained. Interestingly, the ${ }^{13} \mathrm{C}$ NMR spectrum showed signals that correlated easily with those of the complex tetracyclic array of compound 4. The number and types of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals (Table 2) associated with the asbestinin skeleton were essentially the same as those of asbestinin-24 (4), with only small differences in their chemical shifts. The only major difference between their ${ }^{1} \mathrm{H}$ NMR spectra involved the methyl doublet at $\delta 1.00$ ascribable to $\mathrm{H}_{3}-19$ in $\mathbf{4}$, which was replaced in compound $\mathbf{5}$ by a sharp three-proton
singlet at $\delta 1.35$. This observation, coupled with the appearance of a new signal for an additional oxygenated quaternary carbon at δ 75.3 (C-7) in the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5}$, pointed to the presence of a methyl-substituted tertiary alcohol involving C-7. The location of the new hydroxyl group at C-7 was evident from the HMBC correlation of the latter carbon with the $\mathrm{H}_{3}-19$ signal. The methyl group at C-7 showed a strong NOE interaction with $\mathrm{H}-10$; the former must therefore be α-oriented. Absence of any NOE correlations further indicated that $\mathrm{H}_{3}-19$ is trans to both $\mathrm{H}-6$ and H-9.

The molecular formula of asbestinin-26 (6) was determined as $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{5}$, on the basis of its $\left[\mathrm{M}+1-\mathrm{H}_{2}\right]^{+}$fragment ion at m / z 377.2333 in the HRFABMS (positive mode). IR absorptions implied the presence of hydroxyl ($3467 \mathrm{~cm}^{-1}$) and ester carbonyl (1736 cm^{-1}) functionalities. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 6 (Table 2) were analogous to those of known 11-acetoxy-4-deoxyasbestinin E (12) (previously isolated from B. asbestinum) ${ }^{5}$ except for the following observations: H-6 appeared shifted upfield to $\delta 5.40$ in 6 (vs $\delta 6.36$ in 12) and the acetate methyl signal present in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2}$ was missing in the case of compound $\mathbf{6}$. These data pointed to the presence of a hydroxyl group at C-6 in asbestinin- 26 (6). Comparison of the overall physical and spectral data of $\mathbf{6}$ with those reported for compound $\mathbf{1 2}$ indicated that these compounds were otherwise identical. Due to the very small amounts of pure compound obtained, which were mainly used for evaluating its biological activities, no attempt was made to chemically correlate compounds $\mathbf{6}$ and 12.
seco-Asbestinin B (7) had the molecular formula $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{6}$ as determined by HREIMS. The ${ }^{13} \mathrm{C}$ NMR spectrum of 7 (Table 2) displayed signals indicating three carbonyl carbons (of a ketone, aldehyde, and ester groups), five methyls, five methylenes, eight sp^{3} methines, and one oxygenated sp^{3} quaternary carbon. These facts implied that 7 could be a natural product arising from oxidative cleavage of 11-acetoxy-4-deoxyasbestinin D at the Δ^{6} position. Extensive analysis of the $\mathrm{HMQC},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, and HMBC spectra of 7 enabled us to outline its planar structure, which had the A-, B-, and D-rings identical with those of compounds 4-6. The loci of the ketone and aldehyde groups were deduced to be C-7 and C-6, respectively, by HMBC correlations for $\mathrm{H}_{3}-19, \mathrm{H}_{2}-8$, and $\mathrm{H}-9$ to $\mathrm{C}-7$, and $\mathrm{H}_{2}-4$ and $\mathrm{H}_{2}-5$ to $\mathrm{C}-6$. The relative stereochemistry of seco derivative 7 was routinely demonstrated by NOESY; the correlations of $\mathrm{H}-2 / \mathrm{H}_{3}-18, \mathrm{H}-2 / \mathrm{H}-9, \mathrm{H}-2 / \mathrm{H}-14, \mathrm{H}-14 /$ $\mathrm{H}-15$, and $\mathrm{H}-14 / \mathrm{H}_{3}-20$ indicated that $\mathrm{H}-2, \mathrm{H}-9, \mathrm{H}-14, \mathrm{H}-15, \mathrm{H}_{3}-$ 18 , and $\mathrm{H}_{3}-20$ were above the molecular plane and were assigned as having a β-configuration. Moreover, NOESY interactions of $\mathrm{H}-1$ with $\mathrm{H}-10, \mathrm{H}-11$, and $\mathrm{H}_{3}-17$ suggested that these protons were α-oriented. A structurally similar seco-asbestinin was previously isolated from B. asbestinum. ${ }^{10}$
nor-Asbestinin A (8), a minor compound, was obtained as a colorless oil whose molecular formula was established as $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{5}$ by HREIMS. Its IR spectrum showed absorptions at 1736 and 1697 cm^{-1}, typical for saturated ester and ketone functionalities. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}$ contained signals for an acetate ester [$\delta 2.09$ $(3 \mathrm{H}, \mathrm{s})]$, the presence of which was also in full agreement with the $\left[\mathrm{M}-\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]^{+}$fragment at $\mathrm{m} / \mathrm{z} 304$ observed in the EIMS. Therefore, compound $\mathbf{8}$ was a nor-diterpene. The planar structure of nor-asbestinin A (8) was deduced from analysis of 1D- and 2DNMR spectra. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{8}$ had many features in common with those of analogues $\mathbf{4 - 6}$, and indeed, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMQC experiments confirmed many of the same partial structures, although the chemical shifts of the respective protons and carbons of $\mathbf{8}$ (Table 2) differed somewhat. Nevertheless, distinctively different spectroscopic features were observed in the NMR spectra, which ultimately indicated that the methyl group connected to C-7 in compounds $4-6$ had been replaced in $\mathbf{8}$ by a ketone functionality. Critically, the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8}$ lacked the methyl carbon signal typically ascribed to C -19 and also

Table 2. ${ }^{1} \mathrm{H}$ NMR (300 MHz) and ${ }^{13} \mathrm{C}$ NMR (75 MHz) Spectral Data for Compounds $\mathbf{5 - 8}$

atom	asbestinin-25 (5) ${ }^{a}$		asbestinin-26 (6) ${ }^{\text {b }}$		seco-asbestinin B (7) ${ }^{\text {b }}$		nor-asbestinin $\mathrm{A}(\mathbf{8})^{b}$	
	δ_{H}, mult, J in Hz	δ_{C}, mult	δ_{H}, mult, J in Hz	δ_{C}, mult	δ_{H}, mult, J in Hz	δ_{C}, mult	δ_{H}, mult, J in Hz	δ_{C}, mult
1	2.57, q, 9.8	37.7 (CH)	2.44, q, 9.7	37.2 (CH)	2.19, m	38.0 (CH)	2.35, m	38.7 (CH)
2	4.02, br d, 7.5	92.5 (CH)	$3.78, \mathrm{~d}, 7.3$	93.3 (CH)	3.52 , d, 9.2	92.5 (CH)	3.84, d, 11.2	93.9 (CH)
3		77.7 (qC)		77.8 (qC)		75.5 (qC)		76.6 (qC)
4α	1.60, m	$34.6\left(\mathrm{CH}_{2}\right)$	1.30, m	$32.8\left(\mathrm{CH}_{2}\right)$	1.91, m	$28.3\left(\mathrm{CH}_{2}\right)$	1.61, m	$35.5\left(\mathrm{CH}_{2}\right)^{c}$
4β	2.05, m		1.61, m		1.71, m		1.61, m	
5α	1.47, m	$27.0\left(\mathrm{CH}_{2}\right)$	1.85, m	$30.5\left(\mathrm{CH}_{2}\right)$	2.38, m	$38.5\left(\mathrm{CH}_{2}\right)$	1.61, m	$34.4\left(\mathrm{CH}_{2}\right)^{c}$
5β	2.10, m		1.45, m		2.56, m		$1.61, \mathrm{~m}$	
6α		85.8 (CH)		69.7 (CH)	9.73 , dd, 1.3, 2.4	203.5 (CH)	2.28, m	$48.1\left(\mathrm{CH}_{2}\right)$
6β	4.44, br d, 10.3		5.40, m				2.53, m	
7		75.3 (qC)		137.7 (qC)		206.8 (qC)		214.4 (qC)
8α	1.72, m	$47.6\left(\mathrm{CH}_{2}\right)$	5.09, br d, 1.4	127.6 (CH)	2.68, d, 1.7	$48.3\left(\mathrm{CH}_{2}\right)$	2.28, m	$48.2\left(\mathrm{CH}_{2}\right)$
8β	1.72, m				2.70, s		$\begin{aligned} & 3.00, \text { dd, } 5.1, \\ & 11.7 \end{aligned}$	
9	3.95, m	79.6 (CH)	4.71, br s	82.6 (CH)	$\begin{aligned} & 3.90, \text { ddd, 1.2, } \\ & 5.6,12.7 \end{aligned}$	76.7 (CH)	4.24, dt, 2.0, 4.5	80.9 (CH)
10	1.72, m	48.7 (CH)	2.00, br d, 9.6	50.4 (CH)	2.02, m	47.9 (CH)	2.50, m	45.3 (CH)
11	5.50, br d, 4.0	73.4 (CH)	5.41, m	73.6 (CH)	$5.19, \mathrm{t}, 3.5$	72.3 (CH)	5.32, dd, 2.6, 5.5	73.8 (CH)
12	1.39 , m	31.7 (CH)	2.09, m	31.4 (CH)	1.83, m	31.5 (CH)	2.15, m	31.1 (CH)
13α	0.94, m	$31.4\left(\mathrm{CH}_{2}\right)$	1.50, m	$31.4\left(\mathrm{CH}_{2}\right)$	$1.60, \mathrm{~m}$	$30.8\left(\mathrm{CH}_{2}\right)$	1.51, m	$31.5\left(\mathrm{CH}_{2}\right)$
13β	2.05, m		$\begin{aligned} & 1.02, \mathrm{dd}, 2.5 \text {, } \\ & 13.3 \end{aligned}$		1.08, m		1.00, m	
14	1.98, m	38.6 (CH)	1.89, m	38.3 (CH)	1.97, m	37.7 (CH)	1.84, m	37.9 (CH)
15	1.51, m	37.1 (CH)	$1.60, \mathrm{~m}$	36.6 (CH)	1.60, m	36.5 (CH)	1.61, m	36.7 (CH)
16α	3.49 , br d, 12.7	$67.9\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 3.46, \mathrm{dd}, 2.8 \text {, } \\ & 13.1 \end{aligned}$	$67.8\left(\mathrm{CH}_{2}\right)$	3.45 , dd, 3.2, 12.8	$67.7\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 3.45, \text { dd, } 2.9, \\ & 13.0 \end{aligned}$	$67.7\left(\mathrm{CH}_{2}\right)$
16β	3.87, d, 12.7		3.79, m		3.67, d, 12.8		3.76, d, 13.0	
17	0.99, d, 6.7	$11.4\left(\mathrm{CH}_{3}\right)$	0.90, d, 7.0	$10.9\left(\mathrm{CH}_{3}\right)$	0.87, d, 7.0	$11.2\left(\mathrm{CH}_{3}\right)$	0.90, d, 7.1	$10.9\left(\mathrm{CH}_{3}\right)$
18	1.44, s	$22.6\left(\mathrm{CH}_{3}\right)$	1.27, s	$22.2\left(\mathrm{CH}_{3}\right)$	1.23, s	$23.1\left(\mathrm{CH}_{3}\right)$	1.32, s	$24.0\left(\mathrm{CH}_{3}\right)^{c}$
19	1.35, s	$24.2\left(\mathrm{CH}_{3}\right)$	1.64, br d, 1.4	$17.2\left(\mathrm{CH}_{3}\right)$	2.16, s	$30.7\left(\mathrm{CH}_{3}\right)$	0.91, d, 7.2	$17.5\left(\mathrm{CH}_{3}\right)$
20	0.90, d, 7.2	$17.4\left(\mathrm{CH}_{3}\right)$	0.91, d, 7.2	$17.3\left(\mathrm{CH}_{3}\right)$	0.93, d, 7.0	$18.7\left(\mathrm{CH}_{3}\right)$		171.3 (qC)
21		171.0 (qC)		171.3 (qC)		171.1 (qC)	2.09, s	$21.3\left(\mathrm{CH}_{3}\right)$
22	2.00, s	$21.2\left(\mathrm{CH}_{3}\right)$	2.08, s	$21.4\left(\mathrm{CH}_{3}\right)$	2.12, s	$21.2\left(\mathrm{CH}_{3}\right)$		
23	3.27, s	$57.7\left(\mathrm{CH}_{3}\right)$						

${ }^{a}$ Data recorded in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$ at $25{ }^{\circ} \mathrm{C}$. ${ }^{b}$ Data recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$. Assignments were aided by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, DEPT, HMBC, HMQC, and NOESY NMR experiments. ${ }^{c}$ Due to the broad, low-intensity nature of this resonance line, the chemical shift value shown has been estimated.
revealed the presence of a new carbonyl carbon at δ 214.4. This peculiarity suggested that $\mathbf{8}$ must be the oxidative cleavage product of an asbestinin diterpene such as $\mathbf{1 3}$ (Figure 1). On the basis of this assumption the structure of $\mathbf{8}$ was confirmed through the following reaction sequence. Treatment of known asbestinin-20 $(\mathbf{1 5})^{5}$ with $\mathrm{LiClO}_{4} /\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiH}$ in ether at $25{ }^{\circ} \mathrm{C}$, followed by ozonolysis of the ensuing product 6-deoxyasbestinin-20 (13) in EtOAc solution at $-78{ }^{\circ} \mathrm{C}$, gave, upon oxidative workup, the expected ketone $\mathbf{8}$, which was identical to the natural product with respect to its GLC-MS and TLC retention time and mass spectral fragmentation patterns.

A previous investigation of the gorgonian coral B. asbestinum (Pallas) from Puerto Rico that led to the discovery of 10 briarane diterpenoids greatly helped us to quickly recognize compound 9 as the only briarane-based diterpenoid isolated during this investigation. ${ }^{11}$ Briarein 9 was isolated as a colorless oil whose HRESIMS did not show a molecular ion species, but a $\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{Na}\right]^{+}$ fragment ion at $\mathrm{m} / \mathrm{z} 471.2017$ implying that $\mathbf{9}$ had the molecular formula $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{9}$. The IR spectrum revealed broad absorption bands for hydroxyl ($3431 \mathrm{~cm}^{-1}$) and ester carbonyl ($1739 \mathrm{~cm}^{-1}$) groups. The ${ }^{1} \mathrm{H}$ NMR spectrum showed resonances due to two acetates [$\delta 2.09(3 \mathrm{H}, \mathrm{s})$ and $1.97(3 \mathrm{H}, \mathrm{s})$], two olefinic methyls [δ $2.00(3 \mathrm{H}, \mathrm{s})$ and $1.70(3 \mathrm{H}, \mathrm{s})$], two quaternary methyls [$\delta 1.63$ $(3 \mathrm{H}, \mathrm{s})$ and $1.30(3 \mathrm{H}, \mathrm{s})]$, an olefinic proton [$\delta 5.31(1 \mathrm{H}, \mathrm{br} \mathrm{s})]$, and three oxymethine signals [$\delta 5.16(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=2.7 \mathrm{~Hz}), 4.87$ $(1 \mathrm{H}, \mathrm{dd}, J=2.0,8.7 \mathrm{~Hz})$, and $3.87(1 \mathrm{H}, \mathrm{br} \mathrm{s})]$. The ${ }^{13} \mathrm{C}$ NMR spectrum revealed the presence of tetrasubstituted [$\delta 160.1$ (qC) and $127.9(\mathrm{qC})$] and trisubstituted [$\delta 145.8(\mathrm{qC})$ and $124.8(\mathrm{CH})$] double bonds, a hemiketal carbon [$\delta 106.2$ (qC)], two acetate carbonyls [$\delta 170.6(\mathrm{qC})$ and $169.0(\mathrm{qC})$], one α, β-unsaturated- γ lactone carbonyl [$\delta 171.4(\mathrm{qC})$], one tetrasubstituted carbon atom bearing carbon substituents [$\delta 44.3$ (qC)], and four mono-
oxygenated carbons [$\delta 77.9(\mathrm{qC}), 77.2(\mathrm{CH}), 76.1(\mathrm{CH})$, and 75.6 (CH)]. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMQC, and HMBC experiments readily located the acetates at $\mathrm{C}-2$ and $\mathrm{C}-14$ and revealed that $\mathrm{C}-11$ and $\mathrm{C}-12$ each had a free hydroxyl group. The connectivities from C-1 to $\mathrm{C}-8$ and to $\mathrm{C}-17$ and the vicinity of the latter to $\mathrm{C}-18$ and $\mathrm{C}-19$ were easily traced. The environment of the C-11/C-12 vic-glycol was established by HMBC correlations of $\mathrm{C}-12$ to $\mathrm{H}-14$ and $\mathrm{H}_{3}-20$ and of $\mathrm{C}-11$ to $\mathrm{H}_{2}-9$ and $\mathrm{H}_{3}-20$. In addition, the $\mathrm{C}-10$ bridgehead methine showed HMBC correlations with $\mathrm{H}_{3}-15$ and $\mathrm{H}_{3}-20$. Complete ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignments for compound 9 are given in the Experimental Section. NOESY measurements were carried out in order to deduce the relative stereochemical features of 9 . Thus, $\mathrm{H}-10$ gave correlations with $\mathrm{H}-2$ and $\mathrm{H}-12$, but not with $\mathrm{H}_{3}-$ 15 , indicating that $\mathrm{H}-2, \mathrm{H}-10$, and $\mathrm{H}-12$ are located on the same face (assigned as the α-face) and that $\mathrm{H}_{3}-15$ lies on the opposite, β-face. In addition, $\mathrm{H}_{3}-15$ gave NOE correlations with $\mathrm{H}-14$ and $\mathrm{H}_{3}-20$, confirming the β-orientation for these protons. The relative configuration at C-7 was inferred from molecular modeling studies wherein the most stable conformation of $\mathbf{9}$, consistent with all of the NOE interactions observed, required the S^{*} stereochemistry.

In this paper, we also report the isolation from B. polyanthes of four known asbestinin analogues, namely, asbestinin-10, asbestinin-

asbestinin-20 (15)

11-acetoxy-4-deacetoxyasbestinin F (17)

i. NaBH_{4} in $\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 90 \mathrm{~min}(74 \%)$; ii. NaBH_{4} in $\mathrm{MeOH}, 25^{\circ} \mathrm{C}$, $110 \mathrm{~min}(75 \%)$; iii. LiClO_{4} in ether, (Et) $3_{3} \mathrm{SiH}, 25^{\circ} \mathrm{C}, 42 \mathrm{~h}(52 \%)$; iv. O_{3} in EtOAc, $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 105^{\circ} \mathrm{C}$, $4 \mathrm{~h}(100 \%)$.

Figure 1. Chemical interconversion studies aimed at establishing the molecular structures of compounds $\mathbf{8}, \mathbf{1 4}, \mathbf{1 5}$, and $\mathbf{1 7}$ unambiguously.

20, asbestinin-21, and 11-acetoxy-4-deacetoxyasbestinin F. These compounds were first reported between 1993 and 1994, and their structures were elucidated by extensive spectroscopic studies. ${ }^{4,5}$ However, upon reisolation of these compounds, we acquired new spectroscopic data that were not in accordance with the reported structures (Table 3). Further analysis through chemical reactions allowed us to revise their structures (Figure 1). Critically, the ketone group in asbestinin-10 should be placed at C-6 (not at C-4 as originally reported) from HMBC correlations between the carbonyl signal at $\delta 206.4(\mathrm{qC})$ and the $\mathrm{H}_{2}-19$ exomethylene protons at δ_{H} 5.15 and 5.25. In addition, HMBC correlations between the ${ }^{13} \mathrm{C}$ NMR signal at $\delta_{\mathrm{C}} 35.8\left(\mathrm{CH}_{2}\right)$ and $\mathrm{H}_{3}-18$ at $\delta_{\mathrm{H}} 1.25$ unambiguously established the position of this methylene group at C-4. Interestingly, the UV spectrum of asbestinin- 10 shows only end absorption, suggesting that the ketone and exocyclic methylene moieties are not coplanar. To confirm this idea, asbestinin-10 (14) was reduced using NaBH_{4} in MeOH to produce a $3: 1$ mixture of epimeric alcohols 15 and $\mathbf{1 6}$ (Figure 1). The spectroscopic data for $\mathbf{1 5}$ were identical with those already reported for asbestinin-20, indicating that these compounds are the same. ${ }^{5}$ The relative stereochemistry at C-6 of epimers $\mathbf{1 5}$ and $\mathbf{1 6}$ was confidently established from their NOESY spectra. Thus, the NOESY spectrum of 15 exhibited correlations of H-6 with $\mathrm{H}_{3}-18$ and H-9. In compound $16 \mathrm{H}-6$ should be α because of the NOE interactions of $\mathrm{H}-6$ with $\mathrm{H}-10$ and the absence of NOE cross-peaks between $\mathrm{H}-6$ and $\mathrm{H}_{3}-18$. Treatment of 11-acetoxydeacetoxyasbestinin F (17) with NaBH_{4} in MeOH gave asbestinin-20 (15) as the sole product, providing evidence for the presence of a hydroperoxyl group in 17 (Figure 1). Moreover, newly acquired MS data for $\mathbf{1 7}$ (HRFABMS) showed a pseudomolecular ion species $[\mathrm{M}+\mathrm{Na}]^{+}$at $m / z 417.2265$ consistent with the molecular formula $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{Na}$ (not $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{5}$ as originally reported from earlier HREIMS data). ${ }^{5}$ Examination of the HMBC data for asbestinin-21 showed correlations between $\mathrm{H}_{3}-19$ at δ_{H}

Table 3. Original and Revised Structures for Four Asbestinin Diterpenes
Compound name
1.29 and the carbonyl group at $\delta_{\mathrm{C}} 210.8$, suggesting that the latter functionality must be located at C-6 (not at C-4). From the above data and further HMBC correlations between C-4 [$\left.\delta_{\mathrm{C}} 34.0\left(\mathrm{CH}_{2}\right)\right]$ and the proton signals ascribable to $\mathrm{H}-2$ and $\mathrm{H}_{3}-18$, we concluded that in asbestinin-21 there must be a carbonyl at C-6 and a methylene group at C-4, not the other way around as originally
reported (Table 3). ${ }^{5}$ Thus, the earlier reported structures of these four asbestinin analogues were not correct and their structures should be revised as shown in Table 3. The proposed structural revisions suggest that there exists a strong possibility that other asbestinin structures with similar features might also require revision. A list of six additional asbestinin structures likely to require revision, along with their presumably correct structures, is provided as Supporting Information (Table 4).

Briarellin Q (1) demonstrated significant in vitro antiplasmodial activity against chloroquine-resistant Plasmodium falciparum W2 ($\mathrm{IC}_{50} 3 \mu \mathrm{~g} / \mathrm{mL}$), while briarellin R (2) ($\mathrm{IC}_{50} 15 \mu \mathrm{~g} / \mathrm{mL}$) and secobriarellin R (3) ($\mathrm{IC}_{50} 20 \mu \mathrm{~g} / \mathrm{mL}$) were less potent. On the other hand, briarellin R (2) inhibited growth of human leukemia CCRFCEM cells ($\mathrm{IC}_{50} 8.9 \mu \mathrm{~g} / \mathrm{mL}$), and when tested for in vitro antituberculosis activity against Mycobacterium tuberculosis $\mathrm{H}_{37}-$ Rv, briarellin R (2) strongly inhibited mycobacterial growth by 91% whereas briarellin Q (1) marginally inhibited growth by 43% at a concentration of $128 \mu \mathrm{~g} / \mathrm{mL}$. Compound 2 showed no toxicity against the West Nile, HCV, Flu A (H1N1 and H3N2), and Flu B viruses. Although asbestinin-25 (5) was inactive against P. falciparum (IC_{50} value $\geq 50 \mu \mathrm{~g} / \mathrm{mL}$), asbestinin analogues $4,6,8,14$, 15-17, and asbestinin- 21 were moderately active (IC_{50} values 16 , $18,14,9,13,17,13$, and $18 \mu \mathrm{~g} / \mathrm{mL}$, respectively). On the other hand, none of the asbestinin analogues tested showed antiviral activity against the VEE, West Nile, Yellow Fever, Dengue Type 2, Flu A (H1N1 and H3N2), Flu B, RSV A, HBV, or HBC viruses, nor were they active against the M. tuberculosis bacterium at a concentration of $128 \mu \mathrm{~g} / \mathrm{mL}$. However, when subjected to in vitro antiviral testing against Epstein-Barr (EBV) virus, asbestinin-10 (14) was found to be very active ($\mathrm{IC}_{50} 0.25 \mu \mathrm{~g} / \mathrm{mL}$). Additionally, briarein 9 demonstrated moderate in vitro antiplasmodial activity $\left(\mathrm{IC}_{50}=8 \mu \mathrm{~g} / \mathrm{mL}\right)$.

Experimental Section

General Experimental Procedures. Optical rotations were measured with a Perkin-Elmer polarimeter model 243B. IR spectra were recorded with a Nicolet Magna 750 FT-IR spectrophotometer. All NMR spectra were recorded with a Bruker DPX-300 $\left({ }^{1} \mathrm{H}, 300 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 75\right.$ MHz) spectrometer. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, NOESY, HMQC, and HMBC spectra were measured using standard Bruker pulse sequences. Chemical shifts are given on a $\delta(\mathrm{ppm})$ scale with $\mathrm{CHCl}_{3}\left({ }^{1} \mathrm{H}, 7.26 \mathrm{ppm}\right)$ and $\mathrm{CDCl}_{3}\left({ }^{13} \mathrm{C}, 77.0 \mathrm{ppm}\right)$ as the internal standard. Mass spectra were taken at the Mass Spectrometry Laboratory of the University of Illinois at Urbana-Champaign.

Animal Material. The gorgonian octocoral Briareum polyanthes (Duchassaing \& Michelotti) (order Gorgoniidae, phylum Cnidaria, family Briareidae) was collected from a coral reef off Cabo Rojo, Puerto Rico, at a depth of $10-15 \mathrm{~m}$ on October 4, 2000. A voucher specimen has been deposited at the Department of Chemistry, University of Puerto Rico, Río Piedras, Puerto Rico (deposit number BPPR01-1).

Extraction and Isolation. General extraction procedures were as described in our previous publication. ${ }^{3}$ The n-hexane extract (27.8 g) was purified by size exclusion chromatography on a Bio-Beads SX-2 column with toluene to yield 12 fractions (1-12). Fraction 7 was concentrated to an orange oil (1.5 g) and chromatographed over Si gel (50 g) with 10% EtOAc in n-hexane to yield 21 subfractions, denoted A-T. Subfraction S (192 mg) was purified further by CC over Si gel $(10 \mathrm{~g})$ with $0.5 \% \mathrm{MeOH}$ in CHCl_{3} to give briarein $9(6 \mathrm{mg})$. Fraction 9 was concentrated to a yellow oil (2.8 g) and chromatographed over Si gel (100 g) with 10% EtOAc in n-hexane to yield 30 subfractions, denoted I-XXX. Subfractions XV (106 mg) and XVI (39 mg) were combined and chromatographed over Si gel (10 g) with $1 \% \mathrm{MeOH}$ in CHCl_{3} to give briarellin R(2)(28 mg). Purification of subfraction XVII $(12 \mathrm{mg})$ by CC over Si gel $(7 \mathrm{~g})$ with $0.3 \% \mathrm{MeOH}$ in CHCl_{3} gave nor-asbestinin A (8) (8.1 mg). Subfraction XX was identified as known asbestinin-10 (18.3 mg). ${ }^{4}$ Briarellin $\mathrm{Q}(\mathbf{1})(4.0 \mathrm{mg})$ was isolated from subfraction XXI (176 mg) by successive Si gel CC with $1 \% \mathrm{MeOH}$ in CHCl_{3} and 3% acetone in CHCl_{3}. Subfraction XXIII (283 mg) was chromatographed over Si gel (10 g) and eluted with $0.5 \% \mathrm{MeOH}$ in CHCl_{3} to give known 11-acetoxy-4-deacetoxyasbestinin $\mathrm{F}(44.2 \mathrm{mg}){ }^{5}$

Purification of subfraction XXIV (110 mg) over a Si gel column (7 g) with $1 \% \mathrm{MeOH}$ in CHCl_{3} gave asbestinin-26 (6) (7.2 mg). Subfraction XXVIII (293 mg) was chromatographed successively over Si gel (10 g) using $0.5 \% \mathrm{MeOH}$ in CHCl_{3} and then 10% acetone in CHCl_{3} to yield seco-briarellin R (3) (5.0 mg). Fraction $10(0.70 \mathrm{mg})$ was fractionated over Si gel (30 g) with 10% EtOAc in n-hexane to yield 32 subfractions, denoted $1-32$. Subfractions 14 and 23 were identified, respectively, as asbestinin- $24(4)(8.1 \mathrm{mg})$ and known asbestinin-10 $(36 \mathrm{mg}){ }^{4}$ Subfraction $24(53 \mathrm{mg})$ was purified by successive Si gel CC using $1 \% \mathrm{MeOH}$ in CHCl_{3} and then 2% acetone in CHCl_{3} to give seco-asbestinin B (7) (14 mg). Subfraction $25(73 \mathrm{mg})$ was chromatographed over Si gel $(5 \mathrm{~g})$ with $0.5 \% \mathrm{MeOH}$ in CHCl_{3} to give additional quantities of known 11-acetoxy-4-deacetoxyasbestinin $\mathrm{F}(7 \mathrm{mg})$ and asbestinin- $25(5)(56 \mathrm{mg}) .{ }^{5}$ Fraction $11(0.90 \mathrm{~g})$ was purified by CC over Si gel (40 mg) with 10% EtOAc in n-hexane to yield 20 subfractions, denoted A-T. Subfraction Q (93 mg) was chromatographed over a Si gel (5 g) column with $1 \% n$-hexane in CHCl_{3} to give known asbestinin- $21(9 \mathrm{mg}) .{ }^{5}$ Subfraction R was identified as the known asbestinin- $20(84 \mathrm{mg}){ }^{5}$

Briarellin Q (1): white solid; $[\alpha]^{20}{ }_{D}-17.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (neat) 3457, 2967, 2934, 1732, 1716, 1379, 1251, 1173, 1076, 1009, $753 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) and ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$), see Table 1; HRFABMS (magic bullet) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} 439.2701$ (calcd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{O}_{7}, 439.2696$).

Briarellin R (2): colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}-9.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (neat) 2965, 2933, 1720, 1378, $1251 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 1; HRESIMS $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$ 405.2654 (calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{O}_{5}, 405.2641$).
seco-Briarellin R (3): colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}-16.7$ (c 0.6, CHCl_{3}); IR (neat) $3500-3000,2965,2937,2880,1717,1456,1377,1253,1171$, $1085 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ MHz), see Table 1; HRFABMS (magic bullet) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} 453.2487$ (calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{O}_{8}, 453.2488$).

Asbestinin-24 (4): white semisolid; $[\alpha]^{20}{ }_{\mathrm{D}}+10.0\left(c ~ 1.1, \mathrm{CHCl}_{3}\right)$; IR (neat) 2966, 2928, 2875, 1736, 1460, 1370, 1236, 1093, 1069, 1012 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 1; EIMS m/z $394[\mathrm{M}]^{+}$(1), 334 (59), 323 (54), 302 (33), 175 (40), 146 (53), 133 (79), 93 (91), 55 (100); HREIMS $m / z[M]^{+}$ 394.2722 (calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{5}, 394.2719$).

Asbestinin-25 (5): colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}+9.2\left(c 1.3, \mathrm{CHCl}_{3}\right) ;[\alpha]^{20}{ }_{\mathrm{D}}$ +5.2 (c 1.7, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$); IR (neat) 3540, 2964, 2932, 2876, 1737, 1464, 1384, 1372, 1239, 1074, 1019, 993, $753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 300$ MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 75 \mathrm{MHz}$), see Table 2; EIMS $m / z 410$ $[\mathrm{M}]^{+}(1), 392$ (12), 350 (5), 339 (17), 277 (17), 174 (36), 133 (59), 98 (100), 55 (80); HRFABMS (3-NBA) $m / z[\mathrm{M}+\mathrm{Na}]^{+} 433.2570$ (calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{Na}, 433.2566$).

Asbestinin-26 (6): colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}-7.5$ (c 1.2, CHCl_{3}); IR (neat) 3467, 2962, 2936, 2875, 1736, 1461, 1372, 1240, 1080, $1040 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) and ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$), see Table 2; HRFABMS (magic bullet) $m / z\left[\mathrm{M}+1-\mathrm{H}_{2}\right]^{+} 377.2333$ (calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{O}_{5}, 377.2328$).
seco-Asbestinin B (7): colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}+32.5\left(c \mathrm{c} 0.4, \mathrm{CHCl}_{3}\right)$; IR (neat) 2962, 2929, 2874, 2817, 2720, 1733, 1718, 1459, 1372, 1238, $1080,1020 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 75 MHz), see Table 2; EIMS m/z 394 [M] ${ }^{+}$(2), 336 (11), 277 (20), 234 (54), 176 (70), 149 (100), 133 (48), 105 (42), 55 (41); HREIMS $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+} 394.2357$ (calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{6}, 394.2355$).
nor-Asbestinin A (8): colorless oil; $[\alpha]^{20} \mathrm{D}-29.0\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)$; IR (neat) 2962, 2932, 2871, 1736, 1697, 1462, 1375, 1234, $1073 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 2; EIMS m/z $364[\mathrm{M}]^{+}$(2), 304 (30), 252 (32), 192 (58), 174 (100), 133 (79), 113 (70); HREIMS $m / z[M]^{+} 364.2254$ (calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{5}$, 364.2250).

Briarein (9): colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}-30.9$ (c 1.1, CHCl_{3}); IR (neat) 3431, 2968, 2938, 2873, 1739, 1670, 1436, 1375, 1246, 1196, 1051, $758 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.87(\mathrm{dd}, J=2.0,8.7 \mathrm{~Hz}$, $\mathrm{H}-2), 1.85$ ($\mathrm{m}, \mathrm{H}-3 \alpha \beta$), 2.30 ($\mathrm{m}, \mathrm{H}-4 \alpha$), 3.27 ($\mathrm{m}, \mathrm{H}-4 \beta$), 5.31 ($\mathrm{s}, \mathrm{H}-6$),
 $\mathrm{s}, \mathrm{H}-12), 2.02(\mathrm{~m}, \mathrm{H}-13 \alpha), 2.63(\mathrm{~m}, \mathrm{H}-13 \beta), 5.16(\mathrm{brt}, J=2.7 \mathrm{~Hz}$, $\mathrm{H}-14), 1.30\left(\mathrm{~s}, \mathrm{H}_{3}-15\right), 1.70\left(\mathrm{~s}, \mathrm{H}_{3}-16\right), 2.00\left(\mathrm{~s}, \mathrm{H}_{3}-18\right), 1.63\left(\mathrm{~s}, \mathrm{H}_{3}-\right.$ 20), 1.97 ($\mathrm{s}, \mathrm{H}_{3}-22$), 2.08 ($\mathrm{s}, \mathrm{H}_{3}-24$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 44.3 (qC, C-1), $77.2(\mathrm{CH}, \mathrm{C}-2), 30.7\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 28.4\left(\mathrm{CH}_{2}, \mathrm{C}-4\right), 145.8$ (qC, C-5), 124.8 (CH, C-6), 106.2 (qC, C-7), 160.1 (qC, C-8), 25.1 $\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 39.5(\mathrm{CH}, \mathrm{C}-10), 77.9(\mathrm{qC}, \mathrm{C}-11), 76.1(\mathrm{CH}, \mathrm{C}-12), 26.8$ $\left(\mathrm{CH}_{2}, \mathrm{C}-13\right), 75.6(\mathrm{CH}, \mathrm{C}-14), 13.2\left(\mathrm{CH}_{3}, \mathrm{C}-15\right), 22.9\left(\mathrm{CH}_{3}, \mathrm{C}-16\right)$,
127.9 (qC, C-17), $9.9\left(\mathrm{CH}_{3}, \mathrm{C}-18\right), 171.4$ (qC, C-19), $30.9\left(\mathrm{CH}_{3}, \mathrm{C}-20\right)$, 170.6 (qC, C-21), $21.2\left(\mathrm{CH}_{3}, \mathrm{C}-22\right), 169.0(\mathrm{qC}, \mathrm{C}-23), 21.4\left(\mathrm{CH}_{3}, \mathrm{C}-24\right)$; HRESIMS m/z.[M $\left.-\mathrm{H}_{2} \mathrm{O}+\mathrm{Na}\right]^{+} 471.2017$ (calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{Na}$, 471.1995).

Conversion of Asbestinin-10 (14) into Asbestinin-20 (15). A mixture of asbestinin-10 (130.0 mg, 0.35 mmol$)$ and $\mathrm{NaBH}_{4}(52.6 \mathrm{mg}$, $1.38 \mathrm{mmol})$ in $\mathrm{MeOH}(6.0 \mathrm{~mL})$ was stirred at $25^{\circ} \mathrm{C}$ for 90 min . The reaction mixture was quenched with 5 N HCl and concentrated in vacuo, and the residue obtained was partitioned between CHCl_{3} and $\mathrm{H}_{2} \mathrm{O}$. The dried $\left(\mathrm{MgSO}_{4}\right)$ organic extract was concentrated to give an oil $(95 \mathrm{mg})$, which was purified by HPLC (Chiracel OD, elution with 2\% 2-propanol in hexane), affording pure asbestinin-20 (15) $(28.0 \mathrm{mg}, 56 \%$ yield) and 6-epi-asbestinin-20 (16) ($9.2 \mathrm{mg}, 18 \%$ yield).

6-epi-Asbestinin-20 (16): colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}-30.0\left(c 0.5, \mathrm{CHCl}_{3}\right)$; IR (neat) 3442, 2966, 2933, 2875, 1733, 1646, 1461, 1373, 1237, 1112, 1077, 1017, 968, $752 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.28(\mathrm{~m}$, $\mathrm{H}-1), 3.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-2), 1.51(\mathrm{~m}, \mathrm{H}-4 \alpha), 1.02(\mathrm{dd}, J=2.1$, $13.5 \mathrm{~Hz}, \mathrm{H}-4 \beta$), 1.88 (m, H-5 $\alpha \beta$), 4.27 (br s, H-6), 2.16 (m, H- $8 \alpha \beta$), 4.16 (ddd, $J=1.5,4.3,8.8 \mathrm{~Hz}, \mathrm{H}-9), 2.20(\mathrm{~m}, \mathrm{H}-10), 5.36$ (dd, $J=$ $2.5,5.3 \mathrm{~Hz}, \mathrm{H}-11), 2.16(\mathrm{~m}, \mathrm{H}-12), 1.51(\mathrm{~m}, \mathrm{H}-13 \alpha), 1.02(\mathrm{dd}, J=$ $2.1,13.5 \mathrm{~Hz}, \mathrm{H}-13 \beta$), 1.88 (m, H-14), 1.61 (m, H-15), 3.46 (m, H-16 α), $3.76(\mathrm{~d}, J=13.2 \mathrm{~Hz}, \mathrm{H}-16 \beta), 0.89\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, \mathrm{H}_{3}-17\right), 1.30(\mathrm{~s}$, $\mathrm{H}_{3}-18$), 5.36 (br s, H-19 α), 5.07 (br d, $J=6.4 \mathrm{~Hz}, \mathrm{H}-19 \beta$), 0.92 (d, J $\left.=7.4 \mathrm{~Hz}, \mathrm{H}_{3}-20\right), 2.09\left(\mathrm{~s}, \mathrm{H}_{3}-22\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 38.8$ ($\mathrm{CH}, \mathrm{C}-1), 94.1(\mathrm{CH}, \mathrm{C}-2), 76.0(\mathrm{qC}, \mathrm{C}-3), 31.6\left(\mathrm{CH}_{2}, \mathrm{C}-4\right), 27.4\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-5), 76.0(\mathrm{CH}, \mathrm{C}-6), 156.9(\mathrm{qC}, \mathrm{C}-7), 31.6\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 83.0(\mathrm{CH}$, C-9), $45.8(\mathrm{CH}, \mathrm{C}-10), 73.9(\mathrm{CH}, \mathrm{C}-11), 31.3(\mathrm{CH}, \mathrm{C}-12), 31.6\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-13), 38.0(\mathrm{CH}, \mathrm{C}-14), 36.7(\mathrm{CH}, \mathrm{C}-15), 67.5\left(\mathrm{CH}_{2}, \mathrm{C}-16\right), 10.9\left(\mathrm{CH}_{3}\right.$, $\mathrm{C}-17), 23.5\left(\mathrm{CH}_{3}, \mathrm{C}-18\right), 114.9\left(\mathrm{CH}_{2}, \mathrm{C}-19\right), 17.5\left(\mathrm{CH}_{3}, \mathrm{C}-20\right), 171.3$ (qC, C-21), $21.3\left(\mathrm{CH}_{3}, \mathrm{C}-22\right)$; HRESIMS $m / z[\mathrm{M}+\mathrm{H}]^{+} 379.2489$ (calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{5}, 379.2484$).

Conversion of 11-Acetoxy-4-deacetoxyasbestinin F (17) into Asbestinin-20 (15). Fresh $\mathrm{NaBH}_{4}(8.1 \mathrm{mg}, 0.11 \mathrm{mmol})$ was added to a solution of 11-acetoxy-4-deacetoxyasbestinin $\mathrm{F}(21 \mathrm{mg}, 0.053 \mathrm{mmol})$ in $\mathrm{MeOH}(3.0 \mathrm{~mL})$, and the resulting mixture was stirred at $25^{\circ} \mathrm{C}$ for 110 min . After the addition of 1 N HCl the reaction mixture was concentrated in vacuo and the residue obtained was suspended in $\mathrm{H}_{2} \mathrm{O}$ and extracted with CHCl_{3}. The dried $\left(\mathrm{MgSO}_{4}\right)$ organic layer was concentrated to dryness to yield asbestinin-20 ($15 \mathrm{mg}, 75 \%$ yield).

Deoxygenation of Asbestinin-20 (15) to Yield 6-Deoxyasbestinin20 (13). After stirring a mixture of $\mathrm{LiClO}_{4}(6.0 \mathrm{mg}, 0.056 \mathrm{mmol})$ and asbestinin-20 ($19.4 \mathrm{mg}, 0.051 \mathrm{mmol}$) in dry ether $(2.0 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ for 2 min under nitrogen, triethylsilane ($25 \mu \mathrm{~L}, 0.154 \mathrm{mmol}$) was added at once. Upon stirring at $25^{\circ} \mathrm{C}$ for another 42 h the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with diethyl ether $(3 \times 5 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ organic layer was concentrated in vacuo, and the residue obtained was purified by Si gel CC (elution with $25 \% \mathrm{EtOAc}$ in n-hexane) to give 8.4 mg (43% yield) of unreacted asbestinin-20 and pure 6-deoxyasbestinin-20 (13) $(5.5 \mathrm{mg}, 52 \%$ yield).

6-Deoxyasbestinin-20 (13): colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 2.41(\mathrm{~m}, \mathrm{H}-1), 3.75(\mathrm{~d}, J=6.7 \mathrm{~Hz}, \mathrm{H}-2), 2.15(\mathrm{br} \mathrm{d}, J=13.3$ $\mathrm{Hz}, \mathrm{H}-8 \alpha), 3.36(\mathrm{dd}, J=6.8,13.3 \mathrm{~Hz}, \mathrm{H}-8 \beta), 4.04(\mathrm{dd}, J=4.3,6.5$ $\mathrm{Hz}, \mathrm{H}-9), 2.20$ (m, H-10), 5.26 (m, H-11), 2.06 (m, H-12), 1.88 (m, $\mathrm{H}-14), 1.41$ (m, H-15), 3.49 (dd, $J=2.8,13.0 \mathrm{~Hz}, \mathrm{H}-16 \alpha$), 3.77 (br s, $\mathrm{H}-16 \beta), 0.92\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, \mathrm{H}_{3}-17\right), 1.28\left(\mathrm{~s}, \mathrm{H}_{3}-18\right), 5.18$ (br s, H-19 α), 5.27 (br s, H-19 β), 0.94 (d, $J=7.2 \mathrm{~Hz}, \mathrm{H}_{3}-20$), 2.08 (s, H3-22); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 40.1(\mathrm{CH}, \mathrm{C}-1), 93.3(\mathrm{CH}, \mathrm{C}-2), 77.2(\mathrm{qC}$, $\mathrm{C}-3), 35.9\left(\mathrm{CH}_{2}, \mathrm{C}-4\right), 37.6\left(\mathrm{CH}_{2}, \mathrm{C}-5\right), 31.6\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 146.7(\mathrm{qC}$, C-7), $41.6\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 80.0(\mathrm{CH}, \mathrm{C}-9), 47.9(\mathrm{CH}, \mathrm{C}-10), 73.1(\mathrm{CH}$, C-11), 31.2 (CH, C-12), $29.7\left(\mathrm{CH}_{2}, \mathrm{C}-13\right), 37.4(\mathrm{CH}, \mathrm{C}-14), 36.7(\mathrm{CH}$, $\mathrm{C}-15), 68.2\left(\mathrm{CH}_{2}, \mathrm{C}-16\right), 11.0\left(\mathrm{CH}_{3}, \mathrm{C}-17\right), 24.0\left(\mathrm{CH}_{3}, \mathrm{C}-18\right), 114.1$ $\left(\mathrm{CH}_{2}, \mathrm{C}-19\right), 18.1\left(\mathrm{CH}_{3}, \mathrm{C}-20\right), 171.1(\mathrm{qC}, \mathrm{C}-21), 21.2\left(\mathrm{CH}_{3}, \mathrm{C}-22\right)$; HRFABMS (magic bullet) $m / z[\mathrm{M}+\mathrm{H}]^{+} 363.2534$ (calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{4}$, 363.2535).

Microozonolysis of 6-Deoxyasbestinin-20 (13) to Yield norAsbestinin A (8). A stream of ozone in oxygen was bubbled into a solution of 6-deoxyasbestinin-20 ($1 \mathrm{mg}, 0.003 \mathrm{mmol}$) in EtOAc (1 mL) kept at $-78^{\circ} \mathrm{C}$ until the solution turned blue. The solution was stirred for another 5 min and then was allowed to warm to $25^{\circ} \mathrm{C}$ while the excess ozone was removed (and the sample concentrated) with a stream of nitrogen. After addition of $\mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{~mL})$ and a few drops of 30% $\mathrm{H}_{2} \mathrm{O}_{2}$ the ozonide obtained was refluxed to $105^{\circ} \mathrm{C}$ for 4 h , then allowed to cool, and extracted with $\mathrm{CHCl}_{3}(3 \times 5 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ organic layer was concentrated, and the oily product was analyzed by TLC and GLC-MS. On the basis of its retention time and mass spectral fragmentation patterns the product obtained was identified as norasbestinin $\mathrm{A}(\mathbf{8})$.

Acknowledgment. We are grateful to J. A. Sánchez and C. Toledo for assistance during the collection of the biological specimen. The National Cancer Institute (NCI, Bethesda, MD), the National Institute of Allergy and Infectious Diseases (NIAID, Bethesda, MD), the Tuberculosis/Antimicrobial Acquisition \& Coordinating Facility (TAACF, Southern Research Institute, Birmingham, AL), and the Instituto de Investigaciones Científicas Avanzadas y Servicios de Alta Tecnología (Ancón, Panama) provided in vitro cytotoxicity, antiviral, antituberculosis, and antiplasmodial activity data, respectively. High-resolution EI, ESI, and FAB mass spectrometry determinations were provided by the Mass Spectroscopy Laboratory of the University of Illinois at Urbana-Champaign. C.A.O. thanks the UPR-RISE Fellowship Program for financial support. This work was partially supported by the NIHSCORE Program (Grant S06GM08102) of the University of Puerto Rico and the NINDS and NCRR SNRP Program \#NS39408M.

Supporting Information Available: List of six asbestinin diterpenoids isolated from Briareum asbestinum (during prior work) whose molecular structures are likely to require revision (Table 4). This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) Bayer, F. M. The Shallow Water Octocorallia of the West Indian Region; Martinus Nijhoff: The Hague, 1961.
(2) For prior work on the natural products chemistry of B. polyanthes, see: (a) Grode, S. H.; James, T. R.; Cardellina, J. H., II. Tetrahedron Lett. 1983, 24, 691-694. (b) Grode, S. H.; James, T. R., Jr.; Cardellina, J. H., II; Onan, K. D. J. Org. Chem. 1983, 48, 52035207. (c) Cardellina, J. H., II; James, T. R., Jr.; Chen, M. H. M.; Clardy, J. J. Org. Chem. 1984, 49, 3398-3399. (d) Cardellina, J. H., II. Pure Appl. Chem. 1986, 58, 365-374. (e) Cardellina, J. H., II; Hendrickson, R. L.; Manfredi, K. P.; Strobel, S. A.; Clardy, J. Tetrahedron Lett. 1987, 28, 727-730. (f) Pordesimo, E. O.; Schmitz, F. J.; Ciereszko, L. S.; Hossain, M. B.; Van, der Helm, D. J. Org. Chem. 1991, 56, 2344-2357.
(3) Ospina, C. A.; Rodríguez, A. D.; Ortega-Barria, E.; Capson, T. L. J. Nat. Prod. 2003, 66, 357-363.
(4) Rodríguez, A. D.; Cóbar, O. M. Tetrahedron 1993, 49, 319-328.
(5) Rodríguez, A. D.; Cóbar, O. M.; Martínez, N. J. Nat. Prod. 1994, 57, 1638-1655.
(6) Selected NOEs for briarellin R (2): $\mathrm{H}-1 / \mathrm{H}_{3}-17, \mathrm{H}-2 / \mathrm{H}-14, \mathrm{H}-2 / \mathrm{H}_{3}-$ $18, \mathrm{H}-6 / \mathrm{H}_{3}-19, \mathrm{H}-9 / \mathrm{H}_{3}-19, \mathrm{H}-10 / \mathrm{H}_{3}-20, \mathrm{H}-14 / \mathrm{H}-15, \mathrm{H}-15 / \mathrm{H}_{3}-17$.
(7) Selected NOEs for seco-briarellin R (3): H-2/H-14, H-2/H3-18, H-10/ $\mathrm{H}_{3}-20, \mathrm{H}-14 / \mathrm{H}-15$.
(8) Rodríguez, A. D.; Cóbar, O. M. Tetrahedron 1995, 51, 6869-6880.
(9) Morales, J. J.; Lorenzo, D.; Rodríguez, A. D. J. Nat. Prod. 1991, 54, 1368-1382.
(10) Rodríguez, A. D.; Cóbar, O. M.; Martínez, N. Tetrahedron Lett. 1994, 35, 5793-5796.
(11) Rodríguez, A. D.; Ramírez, C.; Cóbar, O. M. J. Nat. Prod. 1996, 59, 15-22.
NP060317Y

[^0]: * Corresponding author. Tel: (787)-764-0000, ext. 4799. Fax: (787)-756-8242. E-mail: abrodriguez@uprrp.edu.

[^1]: ${ }^{a}$ Data recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$. Assignments were aided by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, DEPT, HMBC, HMQC, and NOESY NMR experiments. ${ }^{b}$ Broad,

